Chemical Industry QC with NIR

Read this post, or watch the webinar instead!

Quality control for many labs involves a heavy dose of wet chemistry methods, things like titration and separation techniques that take skill, time and (even more) chemicals to execute. Luckily, some of these traditional testing methods can be replaced by simple, fast and safe NIR spectroscopy.

While this blog title indicates applicability to the Chemical Industry, “chemical” is one broad umbrella. There are myriad products and processes that fall under the chemicals category, from natural products like wood and pulp to personal care products to standard bulk chemicals. Reaching all of these audiences with one blog post seemed a little daunting until we broke it down to some common key themes for implementation of NIR for the chemical (or any!) industry:

  • Raw material qualification
  • Intermediate/in-process testing
  • Finished product testing

Of course, the typical applications that might fall into any one of these categories will differ based on the products being produced. Some of the more common applications include:

  • Material identification
  • %-Moisture or %-solvent quantification
  • Reaction extent or %-polymerization
  • Hydroxyl and acid number determination

As with many other industries, the raw materials used for production of chemical products are often non-discrete, sourced from various parts of the galaxy, and labeled–sometimes correctly, sometimes not.  If you follow product recalls, you’ll find that millions of dollars have been lost due to mislabeled containers being poured into mixers, placed on trucks for distribution to other producers, or stocked on store shelves.

NIR is one quick tool used for identity testing of routinely received materials. There is potential to differentiate isomers, crystalline forms, chemical analogs, fatty acids, and even contaminated materials. Because identity testing with NIR takes seconds and can be done in the warehouse, more frequent testing can be accomplished without backlogging the QC guys and gals.

On the quantitative side, there is plenty to measure keeping in mind the inherent sensitivity of NIR to particular molecular bonds, including O-H, C-H, N-H and C-O bonds. So, if those bonds are changing in type or in number, NIR could be a great fit. This is the case in the typical chemical application of determining hydroxyl number, where we observe a decrease in NIR signal attributed to O-H bonds as those O-H end groups are consumed during polymerization. In fact, determining hydroxyl number of polyols by NIR is a standard practice per ASTM and ISO.

BUCHI Market Manager and former BUCHI NIR Applications Specialist Ryanne Palermo produced a short webinar on these topics, including a fiery example of tracking nitrogen substitution in nitrocellulose. Tune into the webinar by clicking here.

Find more free, streaming content on our BUCHI Webinar On-Demand page, including information about preparative chromatography, laboratory and industrial evaporation, drying, encapsulation and more.

Be a Champion of Final Goods Inspection

Max won’t let a pile of untested final goods (or third wheel) stand between him and a coffee date with his lady love. Check out the newest and last installment of the Food Quality Champion Series animated videos, then download the Guidebook and become a Final Goods Inspection Champion, yourself!

The Final Goods Inspection Guidebook is ripe with information to understand or expedite quality control operations in the food and feed industry. Topics include:

  • Regulations impacting final product quality control
  • Representative sampling & sample preparation
  • Tips for optimizing Kjeldahl workflow for protein determination
  • Tips for optimizing extraction and hydrolysis workflow for fat determination
  • Tips for optimizing NIR methods for proximate determination in food and feed products

Download the guidebook for helpful insights, then start a conversation with your local BUCHI Application Specialists to see how you can be a Champion!

 

 

Champion saves the day: Volume 2 Production

In-process and at-line NIR for production

Beat the costs in production! Download Volume 2 of the Champions’ Guidebook and find out how to save money while monitoring production lines.

E-MAIL_2_898x529

Our determined (and love-struck) food champion, Max, is back at it. Check out the newest animated video to see how NIR can avoid costly production errors (and increase profitability) after googly-eyed Max’s big goof-up.

One of the greatest assets of on-line and at-line NIR is having a second set of (focused) “eyes” on production operations. The NIR can be trained to measure critical material properties for in-process or finished products, or even do simple identification procedures to confirm questions like: is Product A is actually being produced?

Max may be a little distracted at times, but NIR can still make him a champion!

Be a Food Analysis Champion!

Save time with efficient incoming goods inspection

New BUCHI campaign delivers 3 e-booklets to create Food Analysis Champions!

beattheclock

Every day, food producers undergo myriad processes and procedures designed to achieve a quality product and (hopefully) a profitable business.

The loading docks and warehouse serve as initial points of contact for ingredients and foodstuffs that will become integrated into delicious (and sometimes nutritious) food products. It is the obligation of the producer to ensure that they are obtaining the highest quality and correctly priced goods prior to feeding those ingredients into the production process.

Our first booklet provides insight into challenges and opportunities related to incoming goods inspection, including:

  • Typical slow-downs in incoming goods receiving
  • Tips to meeting incoming goods inspection requirements efficiently
  • Benefits of using fast, non-destructive NIR analysis for testing incoming goods
  • Improving time-to-result for classical reference methods (i.e. extraction and Kjeldahl)
  • Sample NIR and classical testing applications to help you save time!

Download this complimentary resource, and stay tuned for future additions to the series, including: production and finished goods control!

For some nice (and enlightening) lunch break entertainment, watch our Food Analysis Champion, Max, save the day when production is halted due to QC backlog in the BUCHI animated video short series for “Beat the Clock.”

 

BUCHI NIR is Pro-Food Quality at ProFood Tech

The BUCHI wagon got put back on the road for the ProFood Tech conference in Chicago this week. Hopefully you’ll catch us at our booth at Lakeside Upper Hall #3113 (vs. catching our booth attendants just lurking the show floor devouring free samples all day).

ProFood Tech is an event, and BUCHI is a laboratory equipment manufacturer, but you might be interested in the overlap between us. We serve many of the same industries. NIRSolutions_bread

Baking and Snack

We already blogged about some of the sweet stuff BUCHI can do in the chocolate industry, but we offer analytical measurements for many raw materials used by the baking and snack industries:

  • Whole & ground cereals (e.g. wheat, semolina, barley, rice, corn/maize)
  • Hulls & bran
  • Oil seed meals
  • Fats & oils (e.g. vegetable oils and animal fats)
  • Egg &  milk derivatives (e.g. egg powder, liquid egg, milk powder)
  • Dry pasta & noodles
  • Ready-meals (e.g. lasagna, frozen pizza)
  • Confectionary (e.g. chocolate, cocoa & derivatives)

Meat, Poultry and Seafood

Protein builds muscle, and BUCHI has flexed some muscles in the QC of many meats and meat products, including:

  • Animal meat (e.g. beef, pork, turkey, wild animals)
  • Fish meat
  • Sausage
  • Animal flour
  • Fish meal
  • Pig adipose tissue

Dairy

If I could survive on cheese and ice cream alone, I would. Our BUCHI NIR products are used to make sure that the stuff that goes into milk and milk products are in-spec. We can help you analyze important sample properties for things like:

  • Milk
  • Yogurt and fresh cheese
  • Hard, semi-hard and soft cheese
  • Processed cheese
  • Butter
  • Milk creams
  • Milk powders

Frozen and Prepared Foods

When you don’t have time to cook or time for long laboratory analysis methods.  BUCHI NIR has methods developed for:

  • Dry pasta/noodles
  • Ready-meals (e.g. lasagna, meat pie, meat & fish ready noodles, frozen pizza)

Beverage

Drink up! BUCHI NIR can be used for quality control of beverages:

  • Distillers grains
  • Milk powders
  • Chocolate (e.g. cocoa & derivatives)

Getting hungry for more information?

Check out our Application Finder on the website or Contact us to talk about your specific application needs.

Chocolate. The quality side.

QC of cocoa & chocolate using NIR

Last week the BUCHI Group gathered in the mountains of Pennsylvania for our annual national meeting. Jerry Richardson, our Product Manager for BUCHI Kjeldahl, Dumas and Extraction, decided to lure the sales group in with a session modeled around a topic near and dear to so many – chocolate.

Chocolate

Being a Swiss company, you know we have had our hands in the chocolate industry. In fact, one of the largest Swiss chocolate makers has been using BUCHI NIR in their quality control program for years. (If you aren’t familiar with NIR yet, please start here!)

Quality

Just as is echoed across most of the food industry, cocoa and chocolate manufacturers rely on analytical methods to monitor and control quality parameters such as moisture, fat, protein and sugar content of their incoming, in-process and finished products. These critical quality parameters impact the taste, texture, shelf-life and cost of our beloved confections.

So, we circle back to the obvious question – how would NIR support the quality and profitability of a cocoa or chocolate manufacturer?

It starts with the bean

Cocoa beans of course are the most important ingredient in chocolate, but the imported bean quality will vary depending on the – sometimes dynamic – environmental conditions of the region where they were grown. Quantification of the fat content in the beans and intermediate products can help ensure consistency in final products. Another important quality parameter is moisture content, which can be used to monitor the roasting process.

The reference method for fat is the Weibull-Stoldt method, a traditional acid hydrolysis followed by Soxhlet extraction in ether; the reference method for moisture is Karl Fischer titration. Both methods require sample preparation, chemical reagents, skilled technicians and extended analysis time. In contrast, beans can be placed in a sample cup on the NIR and both fat and moisture can be measured simultaneously in as little as 30 seconds. The non-destructive, rapid NIR method can be used to make decisions regarding cocoa bean processing – for example, whether or not roasting is complete.

While it’s easy to think of the NIR as a magical black-box, these measurements are based on the interaction of light with your sample. The carbon-hydrogen and hydrogen-oxygen functional groups representative of the sample fat and water content, respectively, are readily measured using NIR spectroscopy. Applying a calibration model, we can quickly relate the sample spectra back to its composition (e.g. fat and moisture). Of course, the calibration model is based on samples of known composition, and the primary reference methods (Weibull-Stoldt, Karl Fischer) need to be employed to generate and validate the relationship between spectra and the quality parameter of interest.

Cocoa Mass, Cocoa Butter and Cocoa Powder

The theme of quick, non-destructive measurements doesn’t end with the bean. NIR has also been applied to measure moisture and fat in nibs and cocoa mass, free fatty acids and iodine value in cocoa butter, and moisture and fat in cocoa powder. These measurements can be used to maximize the cocoa butter yield from the cocoa liquor, ensure the standard of identity specifications are met without excess addition of expensive ingredients like cocoa butter, and to determine the fat content on which the products should be sold; these applications could have a significant impact on production efficiency and profitability.

Confectionery products

Calibration models using NIR have also been developed for key confectionery product categories, including: milk and dark chocolate. Parameters include: moisture, fat (including solid fat at room temperature), lactose, sucrose and theobromine.

As it turns out, the session’s brainchild, Jerry, was himself a closet chocolatier. He built his own chocolate lab in his home. I have yet to quality-check his product portfolio, though I’ve heard good reviews. After hearing him talk about chocolate, I can at least vouch for his devotion to his craft.

Additional information

For additional information, take a look at the BUCHI Application Finder to see what we have published in way of chocolate analysis. You’ll find applications using extraction and hydrolysis, speed extraction, Kjeldahl and NIR. Please note that not all applications are published; if you have an application in mind, consult a BUCHI representative to see if we have experience within our local or global network!