Things are really getting cheesy at BUCHI.

When prodded, I suppose many at BUCHI would agree that some of the cheesiest members of the team belong to the NIR group.

Maybe that’s something to be proud of!

More cheese, please!

Cheese is delicious, after all. With a global market of around $100 Billion USD, I think there is a general agreement on the matter.

There are many ways to consume cheese, of course. Processed cheese products like fondue have their place on the cheese continuum, particular around special events like graduation parties and weddings that seem to dominate our summer calendars.

Manufacturing processed cheese products like fondue is a complex task, with special emphasis on key quality parameters like total solids and fat content.

These products are typically produced by blending one or more shredded natural cheeses with additional ingredients, such as: emulsifying salts, condiments, flavors and other goodies. This mixture is then heated and sheared until a homogeneous molten mass is obtained which can be poured into heart- or graduation-capped shaped molds or other shapes for future devouring.

In order to consistently deliver the same great-tasting product, real-time control of key quality attributes is a must. Monitoring total solids content, fat, salt, pH, homogeneity and more during a blend can allow for real-time process adjustments to meet all of the quality targets and avoid having to rework a batch. The end result: tasty cheese products (read: make money) and improved manufacturing efficiency (read: save money).

While traditional laboratory methods exist for determining the quality parameters, issues with representative sampling and the method collection times are rate-limiting.

Want to learn more? Contact Us and request Short Note #357, or ask to speak with an Applications Specialist to learn more about how you can implement NIR for better process control in cheese manufacturing.

You can also visit our NIR-Online Solutions page to learn more.

If cheese quality is on your mind, but an on-line solution isn’t a good fit, BUCHI also has milk & dairy solutions for our off-line and at-line NIR. You can use our NIR Applications Finder on-line tool to configure the perfect NIR solution for you. Choose your industry and products, then get a full listing of available pre-calibrated applications, plus a quote.

Among our pre-calibrated parameters, you’ll find: dry matter, moisture, fat, protein, lactose, fatty acids, total sugar, ash and more.

Use our new NIR Application Finder to get the latest in Pre-Calibrated Solutions for your industry.

Interested in an application that isn’t listed? Fear not! We have a team of Application Scientists at the ready. Reach them using our Application Support Request Form .

If you’re looking for the full gamut of our published cheese & dairy applications, check out the BUCHI Application Finder. You’ll find methods related to:

  • Extraction
  • Spray Drying
  • Kjeldahl for protein determination
  • Near-infrared spectroscopy

Stay cheesy, my friends!

Champion saves the day: Volume 2 Production

In-process and at-line NIR for production

Beat the costs in production! Download Volume 2 of the Champions’ Guidebook and find out how to save money while monitoring production lines.

E-MAIL_2_898x529

Our determined (and love-struck) food champion, Max, is back at it. Check out the newest animated video to see how NIR can avoid costly production errors (and increase profitability) after googly-eyed Max’s big goof-up.

One of the greatest assets of on-line and at-line NIR is having a second set of (focused) “eyes” on production operations. The NIR can be trained to measure critical material properties for in-process or finished products, or even do simple identification procedures to confirm questions like: is Product A is actually being produced?

Max may be a little distracted at times, but NIR can still make him a champion!

Next at bat: BUCHI @ PROCESS EXPO

Summer might be coming to a close, but our PROCESS EXPO pre-game is just heating up!

HOF Weekend 1957 Game_action_no acc #_CSU

The global food equipment and technology show PROCESS EXPO is being held in Chicago, home of the defending World Series Champions. You can catch us there September 19-22. In the spirit of the game and in anticipation for the Fall Pennant Races, the BUCHI Booth will be hosting a Wii Sports Home Run Derby competition! Be sure to stop by and take a swing for a chance to win some swag.

While you wait to step up to the plate, check out the NIR-Online, our in-line near-infrared sensor that will help you hit a Grand Slam in process control!

Not into baseball? BUCHI has something for you industry, including classical Kjeldahl reference methods and near-infrared spectroscopy (NIRS) for food analysis, in addition to spray-drying, encapsulation and freeze-drying.

Looking for a way around those long QC queues? Check out our NIRSolutions for the PROCESS EXPO industry sectors: 

Confectionery, Baking and Snack

We already blogged about some of the sweet stuff BUCHI can do in the chocolate industry, but our products can provide quantitative measurements for much more:

  • Whole & ground cereals (e.g. wheat, semolina, barley, rice, corn/maize)
  • Hulls & bran
  • Oil seed meals
  • Fats & oils (e.g. vegetable oils and animal fats)
  • Egg &  milk derivatives (e.g. egg powder, liquid egg, milk powder)
  • Dry pasta & noodles
  • Ready-meals (e.g. lasagna, frozen pizza)
  • Confectionary (e.g. chocolate, cocoa & derivatives)

Meat, Poultry and Seafood

Protein builds muscle, and BUCHI has flexed some muscles in the QC of many meats and meat products, including:

  • Animal meat (e.g. beef, pork, turkey, wild animals)
  • Fish meat
  • Sausage
  • Animal flour
  • Fish meal
  • Pig adipose tissue

Dairy

Our BUCHI NIR products are used to make sure that the stuff that goes into milk and milk products are in-spec, including:

  • Milk
  • Yogurt and fresh cheese
  • Hard, semi-hard and soft cheese
  • Processed cheese
  • Butter
  • Milk creams
  • Milk powders

Frozen and Prepared Foods

When you don’t have time to cook or time for long lab turn-around times, BUCHI NIR has methods developed for:

  • Dry pasta/noodles
  • Ready-meals (e.g. lasagna, meat pie, meat & fish ready noodles, frozen pizza)

Beverage

Drink up! BUCHI NIR can be used for quality control of beverages:

  • Distillers grains
  • Milk powders
  • Chocolate (e.g. cocoa & derivatives)

Getting hungry for more information?

Check out our Application Finder on the BUCHI website or Contact us to talk about your specific application needs.

 

What is NIR?

More alphabet soup

Near-infrared spectroscopy. “N-I-R.”  Let’s illuminate the subject a bit, shall we?

Spectroscopy is a branch of science interested in the interaction of light with matter. Near-infrared (NIR) spectroscopy happens when the light used to do the measurements falls within a certain energy or frequency range; typically, 12000 – 4000 cm-1 (or about 700 – 2500 nm in terms of wavelength).

This idea isn’t new. The first observations of NIR light were made by Herschel in 1800, and Coblentz was considered its pioneer in the early 1900’s. However, this small but mighty portion of the electromagnetic spectrum didn’t debut commercially until the 1970’s, coinciding with advancements in PC computing power that radically simplified it’s application.

Why do people use NIR?

Everything you’ve come to love in your life: people, places, baked goods… they are all made up of molecules. Those molecules are made of atoms, and those atoms are moving and grooving (i.e. the bond lengths and bond angles aren’t static, but rather wagging and scissoring and bending and stretching). We can use NIR to measure that molecular dance party, or more technically, molecular vibrations. Those vibrational modes can tell us stuff about the sample that most QC departments like, think: sample identity or composition. 

When the molecules of a sample are hit with NIR light, the light is either absorbed or scattered. When the light is absorbed, we see a peak in our NIR spectrum. When light scatters due to the physical properties of the sample (e.g. particle size, particle morphology, bulk density), the overall slope of the spectrum is impacted. Chemical bonds that absorb NIR well are: oxygen-hydrogen (O-H), carbon-hydrogen (C-H), carbon-oxygen (C-O), nitrogen-hydrogen (N-H), and sulfur-hydrogen (S-H). While NIR isn’t the magic bullet for every analysis, we see samples that are dominated by these types of bonds in many industries, from pharmaceuticals to pet food.

The series of peaks and valleys that appear in an NIR spectrum is the summation of molecular vibrations of the sample. Consider the spectra of 5 different solutions in the figure below, where Absorbance is shown as a function of wavelength (nm). The red spectrum is pure methanol, the green spectrum is pure water. Peaks resulting from the -OH vibrations of both the alcohol and water, as well as the -CH vibration of the alcohol, are labeled.

water-alcohol

Since the energy of the -OH (and -CH) bonds of water and methanol (or donuts) differ, they produce unique spectra, as illustrated in the figure above. Combine that with the fact that spectra (of water, methanol or donuts) is repeatable, and we’re going somewhere. That means, if I scan water with my NIR analyzer 10x, I will get (more or less) the same spectrum, and that spectrum is unique from the other stuff I want to analyze (here, methanol). For those reasons, NIR would be a good tool for identification purposes.

Take another look at the figure above. The peak intensities corresponding to each molecular vibration reflect the relative composition of the molecules (water and alcohol) contributing those bonds to the solution. More specifically, you can see the peak corresponding to the water -OH vibration around 1450 nm increase as the relative proportion of water increases in solution. In the same way, the peak corresponding to the -CH combination vibration around 2250 nm increase as the proportion of methanol increases in the solution. That’s Beer’s Law working for us, where Absorbance at a given wavelength is proportional to the pathlength * molar absorptivity * concentration of the absorbing analyte. Note to the academics: if you dig into the theoretical research, you will see that Beer’s Law applies strictly to ideal solutions. Oh, and if you hadn’t heard, almost nothing is ideal in real life. However, we have mathematical ways to address non-linearity, and in the end, most methods work well. And by work well, we mean produce satisfactory standard errors of prediction. 

But before you get too excited about the infinite possibilities of NIR, let me give you some fine print. Our mortal bodies typically can’t run marathons without training first… and an NIR can’t run a qualitative or quantification application without being trained, either.

Additional resources:

For a good historical, theoretical and applications overview, see the Handbook of Near-Infrared Analysis, edited by Donald A. Burns and Emil W. Ciurczak

Entering the Blogosphere

Why are we here?

Nearly everyone has a blog these days. An internet connection plus a few taps on the keyboard can expose you to myriad blogs on health, finance, technology, world affairs or how to cook exclusively in a crock pot.

We weren’t blogging about any of those things, mostly because we aren’t experts in those categories (certainly not in cooking, although perhaps some of us are very good at speedily consuming those slow-cooked meals). However, there is one blog-worthy topic near and dear to us: near-infrared (NIR) spectroscopy. We’ve been doing it for a few decades at BUCHI, and so we’ve accumulated some knowledge on the subject. Rather than keep those insights all to ourselves, we wanted to drop some here in our shiny, new blog.

Our goal is to create and share content that will be useful for the information seekers, the inquisitive and questioning people out there scouring in the inter-webs to improve their efficiency, productivity or bottom line. Whether you are in the market for, or already own NIR equipment, we hope that you will find something in this blog that will help you along your journey toward successful implementation and laboratory or process data domination.

If you can’t find that golden nugget of information you’re seeking, consider contacting us with questions or to request some feasibility studies.

We hope you’ll come away from this blog thinking something along the lines of this lyric brought to us by the classic American band the Beach Boys, who harmonized:

“I’m picking up good vibrations… good, good, good, good vibrations!”